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Introduction

How much time does it take to factor polynomials? How
can you efficiently tell if a polynomial has roots express-
ible in terms of radicals? Is there a fast method to decom-
pose a polynomial into lower-degree components? Suppose
it is claimed that

VV2 = 1=V1/9 - V29 + V4/9;

how you can check if this is true?

You have to study the underlying algebraic structure, but
often the theorems are not conducive to efficient computa-
tion, and new understanding—and new results—are needed.
In this article I present some theorems that resulted from
the effort to find fast methods for algebraic simplification.

It should be no surprise that, in a computational area,
conjecture and examples go hand-in-hand—but only after
the fact did I realize how closely. Long after I had experi-
mented, conjectured, again experimented, and then proved
did I discover that a simple example—\@ + V3—sheds
much light on four seemingly unrelated results. In several
cases, the theoretical ideas leap from the simple radical. And
that caused me to think more about the role of example.

It is a fact little remarked upon that Euler computed his
way to the law of quadratic reciprocity. Gauss’s calculations
led him to the prime number theorem. Similarly, Dedekind

Different

and Frobenius computed their way to conjecture and prove
a number of results concerning group representations.

Despite these demonstrations of the power of compu-
tation, such calculating fell out favor in the early part of
this century. By introducing abstract methods to algebra,
Hilbert proved the basis theorem, the syzygy theorem, and
the Nullstellensatz. Not long afterward, Noether employed
similar abstract methods in her work on ascending chain
conditions. Computation went out of vogue, eschewed in fa-
vor of abstraction. It was not unusual to see group theory
taught without reference to a single concrete group, to find
the fundamental theorem of Galois theory proved without
the calculation of a single example. There are good reasons
to rely on the abstract approach: it is powerful, and for many
areas of mathematics, even small examples can be remark-
ably difficult to compute (commutative algebra is one such).

Yet, examples have much to teach us. Examples can
point to a flaw in reasoning, and exarmples can give stu-
dents something to hold onto as they attempt to grasp elu-
sive theory. Examples can demonstrate patterns and lead
to conjectures. But to those who were mathematically
raised in the abstract school, it may be surprising to dis-
cover how much examples can guide research.

In this article, I present four results about computational
algebra seen from the perspective of V2 + V3. My main
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purpose is illustrating four results in computational alge-
bra, but along the way I hope to demonstrate the power of
computation.

Factoring Polynomials

How does one factor a polynomial over the rationals? One
might wonder if the problem is decidable; an algorithm
from an astronomer in 1793 shows it is.

Let f(x) be a polynomial of degree n over Z. Compute
the values f(0), f(1), . . ., f(n), and then factor each of the
f(@). Choose a set of factors d(0), d(1), ..., d(n), and in-
terpolate to find a potential factor d(x) of f(x). Integer
factorization is decidable, and because there are only fi-
nitely many sets of the d(?), factoring is decidable.
However, I caution the reader not to implement this al-
gorithm, as it takes exponential time even in the best case,
namely when all the f(7) are prime. (Computer scientists
define the size of a problem to be the number of bits used
to represent the problem. Thus, the input size of “factor
the integer n” is log n, as log n bits are needed to repre-
sent n. The standard viewpoint is asymptotic behavior, so
I ignore constants, and, in particular, the base for the log
function.)

Since the 1970s, the standard method for factoring has
been the Berlekamp-Hensel algorithm (see [1, 11]). This
works by factoring the polynomial mod p for some suit-
able choice of a prime p, and then “lifting” the factoriza-
tion to one mod p2, then to mod p%, and so on until the co-
efficients are sufficiently large that one has a factorization
that “resembles” the factorization over the integers. For ex-
ample, the polynomial

x4 —-8°+22-24x— 6

factors into

@®+ 2x + D@+ 3) (mod5H)
and into

(2% — 8x — 2)(@* + 3) (mod 25)
and, finally, into

@ —8r— D@?+3)

over the integers.

That’s not so bad. The real issue is, does this algorithm
always work? One can always factor mod p, but will the
lifting always be efficient? Are there polyomials for which
the factoring blows up? Unfortunately, the answer is yes.
Swinnerton-Dyer discovered certain irreducible polynomi-

als that factor into linear or quadratic factors mod m for
every integer m. Consider the polynomial

28 — 40x8 + 352x* — 9602 + 576.
Over Q, this is irreducible. But it factors into

(P +6x+8)@2+6r+3)N2+x+6)x2+ax+3)
(mod 7),

and into four quadratic factors mod 49, and into four qua-
dratic factors mod 343, and so on. Indeed, this polynomial
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will factor into linear or quadratic polynomials (mod )
for every integer m.

A polynomial of lower degree with the same property is
at — 1022 + 1. Its zero V2 + V'3 makes it one of a special
class of polynomials discovered by Swinnerton-Dyer.
These polynomials have zeros of the form

Vpi+ Vp + -+ Vp,,

for a set of distinct primes py, ..., p,. Galois theory ex-
plains why they split into so many pieces mod p.

Take an irreducible Swinnerton-Dyer polynomial, say f(x)
of degree 2". Over @), it has Galois group (Z/27)". When p
does not divide the discriminant of f{(x), the Galois group of
flx) over Z/pZ is a subgroup of the Galois group of f{x) over
Q (if p divides the discriminant, the Galois group of f(x) over
Z/pZ is a homomorphic image of a subgroup of the Galois
group of flx) over (O). Finite extensions of finite fields are
always normal (when one root is adjoined, all the roots are),
and the Galois group is cyclic. Thus, the Galois group over
Z/pZ must be Z/27 or Z/Z. The polynomial f{x) must give
rise to an extension of degree at most 2 over Z/pZ. Thus,
S(x) splits into linear or quadratic factors mod p for every p.

Suppose now one takes two Swinnerton-Dyer polyno-
mials, say fi(x) with zeros V2+V5+ - +V Paon—1 and
Fo(@) with zero V3 + V11 + -+ + Vpa,. Then, fi(x) fo(x)
is of degree 2r over Q but factors into 2272, 22n=1 gr 22n
irreducibles (mod p). (One must be careful to stay away
from primes that divide the discriminant of the polynomial,
as factoring over such primes introduces repeated factors.)
Recombining factors to find the factorization of fi(x)fo(x)
over Q involves at least 22" combinations.

When Does a Polynomial Have Solvable Zeros?

Given an irreducible polynomial over the rationals, how can
we tell if its zeros are expressible in terms of radicals? Galois
theory gives a technique to discover the answer. That is, in
principle. In practice, if f{x) is a polynomial of degree n,
Galois’s algorithm takes time greater than 2* steps to deter-
mine solvability—even with today’s computers, the technique
is simply not viable for polynomials of degree higher than 5.

There is another well-known method to solve this prob-
lem: factor flx) over Q[x]/f(x), adjoin a zero of one of the
remaining nonlinear irreducible factors, factor f{x) over the
new field, adjoin another zero, and stop only when the poly-
nomial splits completely. This is a faster technique than
Galois's original method. Ignoring the size of the coeffi-
cients of f{x), bootstrapping, as this method is called, takes
2" steps to find generators for the splitting field of f(x) over
Q. Unfortunately, this is exponential in 7.

There is, however, a polynomial-time algorithm for the
problem. The idea is quite simple: divide the the solvabil-
ity question up into lots of smaller solvability problems.

Let « be a zero of the polynomial f(x). Suppose there is
a field Q(B) between Q and Q(a), Q C Q(B) C Q(«). Then,
a is expressible in radicals over Q if and only if o is ex-
pressible in radicals over Q(8) and g is expressible in terms
of radicals over Q. There’s no reason why one should stop
with one intermediate field.



Suppose I could find a maximal chain of fields @ =
Q(Bo) C QB C -+ CQ(BR) C (@) = Q(Br+1), Wwhere
Q(B;) CFC Q(B;+1) implies F = Q(B;) or F = Q(Bi+1)-
Then, a is expressible in radicals over @ if and only if « is
expressible in radicals over Q(3,) and B, is expressible in
radicals over Q(8,-1) and . . . and B, is expressible in rad-
icals over Q(By) = Q.

In terms of group theory, I am looking at subgroups of
G, the subgroup of the Galois group that fixes a. Let G act
on aset {l={ay..., a,). A CQis a block of imprimitiv-
ity if for all o € G, o{A) N A = J or A. The singleton sets
and the full set () are always blocks; if these are the only
blocks of imprimitivity, then the group is acting primitively
on (). To say that there is no field between Q(3;) and Q@(B;+1)
is equivalent to saying the Galois group of the splitting field
of Q(B;+1) over Q(B;) acts primitively on the set of zeros of
the minimal polynomial of Q(B;+1) over Q(B).

Primitive solvable permutation groups are small. In
1982, Palfy showed that a primitive solvable permutation
group acting on n elements has no more than n325 elements
[8]. So, if one could construct those intermediate fields, the
Galois group that is constructed would be acting primi-
tively on the roots. If the extensions were also solvable, by
Pélfy’s result they would be small, and thus could be com-
puted quickly even by brute force.

Gary Miller and I found a polynomial-time algorithm for
finding maximal subfields between Q and Q(«) [6]; iterat-
ing this gives a method for finding a maximal chain of sub-
fields. Here, I will present Hendrik Lenstra’s implementa-
tion of the Landau-Miller algorithm [7]. Let f(x) be the
irreducible polynomial of « over Q. Suppose f{x) factors
into irreducible factors ITk;(x) in L = Qx)/f(x) = Q(a),
where « is a zero of f{x). Then, for each irreducible factor
h(x) of f(x) in L, we define the field L, as follows:

If h(x) = (x — 7) is a linear factor (i.e., if y can be writ-
ten as a polynomial in a with coefficients in QO), let o be the
unique automorphism in the Galois group that takes « to v,
and let L, be the field of invariants of ¢. Otherwise, if vy is
a zero of h(x), a nonlinear factor of f{x) in Q[x]/f(x), then
Ly, = Q(a) N Q(y). All the maximal subfields of L occur
among the Ly; they are those subfields of highest degree over
Q ([7], p. 224). This follows from the simple observation that
if G is a finite group with H C J C G subgroups with H # J,
and no subgroup I of G suchthat H CI CJwith H # I # J,
then there exists o € G — H such that

<Ho>=J ifoHo '=H,
< HoHo l>=J ifgHo '+ H.

One can repeat this procedure [substituting Q(8;) for Q(a)]
to determine a maximal chain of subfields between @ and
Q( ). Not only have we determined solvability, but we have
also given a technique for determining all subfields of a
given field.

Let us take a simple Galois extension but one with some
subfield structure. An obvious example to choose is

Q(V2,V3) = Q(V2 + V3) = Q[zt — 1022 + 1)/x; as we

know, the polynomial 2* — 1022 + 1 has zeros *V2 + V/3.
Factoring that polynomial over the field Q(V2 + V/3), the
polynomial splits completely:

at— 102 + 1
= (@ — 10(V2 + V3) + (V2 + V3)¥)(x + 10(V2 + V3)
~(V2 + V3@ + V2 + V3)x — (V2 + V3))
=@ +V2-V3)x-V2+ V) - V2-V3)-
(x + V2 + V3).

There are three 2-element block decompositions.

The block decomposition {(V2+ V3, V2-V3),
(—\/5 + V3, -V2 - \/§)} gives rise to the polynomials
22— 2V2x — land 2% + 2V2x — 1 and corresponds to the
field @(\/E). The block decomposition {(\/5 +V3,-V2 +
V3), (V2 -V3 ~-V2- V/3)} corresponds to polynomial
factors 22 — 2V3x + 1 and 22 + 2V3x + 1 and the field
Q(V3). And the block decomposition {(V2 + V3, —
V2 - \/5), (—\/§ +V3,V2 - \/§)} corresponds to poly-
nomial factors 22 — 5 — 2V6 and 22 — 5 + 2V6 and the in-
termediate field @(\/6).

If one wants a simple example of Galois theory, the field
@(\/5 + \/§) over Q) is a nice one; it has a slightly com-
plex subfield structure, with three nontrivial subfields. And
the block decomposition of the four zeros +*V2+V3
gives a simple but effective demonstration of some ele-
mentary results in primitive permutation groups. Another
aspect of V2 + V3 has surfaced.

Polynomial Decomposition

Multiplication is a fundamental mathematical operation;
factoring, its reverse. But polynomials are functions and
have another operation akin to multiplication, namely com-
position, f(x) = g(x) oh(x) or, equivalently, g(h(x)).
Composition is interesting for a number of reasons, in-
cluding the fact that in composition, unlike polynomial
multiplication, the degrees multiply. That complexity made
polynomial composition a potential candidate for an RSA-
type cryptosystem. (RSA is a “public key” cryptosystem in
which “easy” parts of the computation are public, and dif-
ficult-to-compute portions are private, thus providing se-
curity. See [9].) The problem is also made more interest-
ing by Liiroth’s theorem [10], which tells us that if k is an
arbitrary field, the fields between k( f{x)) and k(x) are in
one-to-one correspondence with the decompositions of
J(x); each field between k( f(x)) and k(x) can be written as
k(h(x)) for some (right) composition factor of f(x).

These were among the motivations that Dexter Kozen
and I had when we looked at the issue of decomposition.
Previous algorithms had relied on factorization; a theorem
of Evyater and Scott, Dorey and Whaples, and Fried and
MacRae showed that the univariate polynomial f(x) is de-
composable into g(k(x)) if and only if the multivariate poly-
nomial h(y) — k(x) divides f(y) — f(x). Barton and Zippel
(and independently Alagar and Thanh!) used this to de-
compose: factor f{y) — f(x), compute potential decompo-
sition factors from divisors of f{y) — fx). If fly) — f(x)

I am presenting the Barton and Zippel algorithm.
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splits into many factors of small degree, the algorithm takes
exponential time to compute a decomposition. It is the old
recombination of factors problem again.

Kozen and I discovered a simple way to decompose poly-
nomials f{r) when the degree is not divisible by the char-
acteristic of the field [3]. We also found an elegant structure
theorem that gives a method for decomposition. The theo-
rem gives an effective technique for decomposition over fi-
nite fields; the theorem also applies in characteristic 0.

We began by generalizing the concept of polynomial de-
composition. Let k be a fieid of arbitrary characteristic and
let fx) € k[x] be of degree n = rs, not necessarily irre-
ducible or separable. Let & be the splitting field of f{x) over
k, and let ¢ denote the Galois group of k over k.

Definition 1. A block decomposition for fis a multiset A
of multisets of elements of k such that,

¢ f=jea Hgealx — a),
cifo€AE A BEBE A and o € G such that o(a) = B,
then
B = o(4) = {o(y)ly € A}.

A block decomposition A is an r X s block decomposition
if |d =rand Al =5 forall A € A

This generalization of block decomposition to multisets
is useful in decomposition, where polynomials are not nec-
essarily irreducible and may have repeated zeros.

Let ¢}* denote the jth elementary symmetric function on
m-element multisets:

18

BCA,B|=j BEB

(A =
We let ¢§* = 1.

Theorem 2 (Kozen and Landau {3]) Let f(x) € k[x] be
monic of degree n = rs. The following two statements are
equivalent:

e f =g Oh for some g, h € k[x] of degree v and s, respec-
tively.

* There exists an r X s block decomposition A for f such
that

A =ciB)Ek forallAABEAO<j=<s—1.

In the proof of Theorem 2, g and h are explicitly con-
structed from A, B, and A by

s—1
h=> (—1Fcd,
=0
with g determined either explicitly from

9@) = I [x = (1" c3(4)]

A€A
or by the fact that fla) = g(h(x)).

What is the simplest polynomial that we can use to il-
lustrate Theorem 2? Because degrees multiply when poly-
nomials are composed, the lowest-degree polynomial that
has a nontrivial decomposition would be one of degree 4.
The polynomial x? — 1022 + 1 fits the requirements of
Theorem 2, and indeed, we get a block decomposition

A B
V2 +V3 V2 -V3
-V2-V3  —V2+V3

We have

A={V2+V3,V2-V3 -V2+V3 -V2-V3),
c3(4) = 1 = c§(B),
AA)=V2+V3+(-V2-V3)=0=-V2+V3+

V2 - V3 =d&(B),
c3(A) = —5 — 2V,
&B) = -5+ 2V6,
h(x) = 2% — Ox = 22,
9@) =[x = (=1°(=5 - 2VO)][x — (—1)3(=5 + 2V6)]
=22 - 10x + 1.

Thus, we have a decomposition of #* — 102> + 1—a de-
composition that the observant reader may have already
noticed.2

At this point, I might have realized that I should inves-
tigate V2 + V3 for any algebraic investigation [ might try—
but I did not. Instead, I first explored a number of radical
expressions, and only then realized that my familiar ex-
ample was a particularly easy one with which to illustrate
the theorem.

Denesting Radicals
Ramanujan discovered that

VN2 —1=V1/9 — V279 + V49,
V5 - V4 = 1/3(V2 + V20 — V/25),
V7V20 — 19 = VB3 — V273,

How can we simplify nested radicals, going from complex
equations as displayed on the left-hand side to the simpler,
denested version on the right-hand side?

Following [2], a formula over a field k and its depth of
nesting are defined as follows:

¢ An element of & is a formula of depth 0 over k.

¢ An arithmetic combination (A + B, A X B, A/B) of for-
mulas A and B is a formula whose depth over k is
max(depth(A), depth(B)).

¢ Aroot VA of a formula A is a formula whose depth over
k is 1+ depth(A).

Such a formula is a nested radical. A nesting of « means
any formula A that can take « as a value. Note that nth
roots are multivalued, so ambiguity is an issue. See [5] or
[4] for further details.

2Although in the previous section we had three different block decompositions {corresponding to the fields Q(\@), @(\/5) and @(\/6)], under the more restrictive re-
quirements of Theorem 2 that cf(A) € k, we have only one block decomposition, corresponding to the single polynomial decomposition.
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The formula A can be denested over the field k if there
is a formula B of lower nesting depth than A such that
A = B. Formula A can be denested in the field L if there
is a formula B = A of lower nesting depth than A with all
of the terms (subexpressions) of B lying in L. Define the
depth of a over k to be the depth of the minimum depth
expression for «. When given a formula A for « such that
A can be denested, I will sometimes say that « can be
denested. And I will cheat a little by writing a primitive
nth root of unity as a special symbol {, rather than as
a nested radical; this defines the depth of nesting to be
1 for a primitive root of unity that is not already in the
field.

Under what circumstances can a radical be expressed
in terms of radicals with a lower depth of nesting? I dis-
covered that each time I computed subfields of Q(a),
where a was a nested radical, the subfields corresponded
to a denesting.

Theorem 3. Suppose o is a nested radical over k, where
k is a field of characteristic 0 containing all roots of
unity. Then, there is a minimal depth nesting of a with
each of its terms lying in the splitting field of the mini-
mal polynomial of o over k.

All roots of unity is a rather large extension over @; in
particular, it is an infinite extension. From a computational
standpoint, such an extension is not viable. Roots of unity
are needed to make the field extensions between k and L
Galois. However, we can limit ourselves to adding only
those roots of unity that are necessary, thus trading opti-
mality of denesting for finiteness of the extension over Q.
Let ¢; denote the Ith root of unity.

Theorem 4. Suppose « is a nested radical over k, where
k is a field of characteristic 0. Let L be the splitting field
of k(@) over k, with Galois group G. Let l be the least com-
mon multiple of the exponents of the derived series of G.
If there is a denesting of « such that each of the terms
has depth no more than t, then there is a denesting of a
over k() with each of the terms having depth no more
than t + 1 and lying in L({).

We can restore optimality by allowing some additional
roots of unity, those that arise from the original expression
for a:

Corollary 5. Let k, o, L, G, |, and t be as in Theorem 4.
Let m be the least common multiple of the (my), where
the m; are the indices of the roots in the given nested ex-
pression for a. Let r be the least common multiple of (m,
). Then, there is a minimal depth nesting of a over k(&)
with each of its terms lying in L({).

One of the simplest nested radicals is V5 + 2V'6; con-
sider the field extension Q(V5 + 2\/6) over Q. As we al-
ready know, the algebraic number V5 + 2V6 satisfies the
irreducible polynomial x* — 1022 + 1 over Q. The field

@(\/5 +2V6) is of degree 4 over Q, and it has
{1, V5 +2V6,5 + 2V6, (V5 + 2V6)%} as a basis over Q.

This basis is of a nice mathematical form: {1,a,02 o). But
because

V5 +2VE=V2 +V3

and 1, V2, \/§, and V6 are linearly independent over Q,
{1, V2, V/3, V/6} is also a basis for Q(V'5 + 2V6) over Q.
Many people prefer the second basis; it seems more nat-
ural to them.

Thus, V2 +V3 provides a practical reason for investi-
gating denesting, namely designating procedures for a sym-
bolic computation system like Maple to simplify nested rad-
icals, and thus, for example, to transform the basis {1,
V5 +2V6, 5+ 2V6, (V5+2V6)3} into {1, V2, V3,
\/5}. In computational algebra, the practical and the theo-
retical often go very much hand in hand.

What Is the Significance of All This?

V2 + V3 is one of the simplest combined radicals that
exists, yet it provides a wealth of information about al-
gebraic structure. For example, studying it demonstrates
the relationship between intermediate subfields and de-
composition—a relationship that led to the discovery of
Theorem 2.

In one sense, I have presented a curiosity: one simple
equation that illustrates results about factoring polynomi-
als over Q, finding subfields using minimal blocks of im-
primitivity, determining decompositions of polynomials,
and denesting. But I think there is a deeper issue here.

For many of us, computation has gone the way of the
slide rule. We use it occasionally to illustrate a theorem.
Yet the tools of such symbolic computation packages as
Maple, MacCauley, Grobner, and AXIOM make such alge-
braic computations far easier to perform than they have
ever been. When, in the 1920s, the Hilbert and Noether
school made the transition to abstract methods, it was
greatly beneficial to mathematics. The multivariate com-
putations in commutative algebra were too large to be done
by hand, and the abstract methods achieved what compu-
tation could not. Unfortunately, the transition went much
farther. Algebraists and mathematicians of many flavors
pursued abstraction, and concrete examples rarely ap-
peared. The result was a gain—and a loss. We have a
chance to recoup that now. The computational tools re-
cently introduced by computer scientists and mathemati-
cians enable us to solve much harder problems, in exten-
sions of higher degree, with many variables.

I am convinced that had I fully examined V2 + \/?:, re-
sults in decomposition and denesting would have jumped
out at me—or others—years earlier. Proof is the backbone
of mathematics. Examples can light the way. We should
use them for teaching, exploring, and research.
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