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Introduction 
How much  t ime does  it t ake  to factor  po lynomia ls?  How 

can you efficiently tell  if a polynomial  has  roo ts  express-  
ible in t e rms  of  radicals?  Is there  a fast me thod  to decom- 
pose  a polynomial  into lower-degree  components?  Suppose  

it is c la imed that  

~ / ~ / 2  - 1 = ~ - ~ 7 9  + ~ ;  

how you can check if this  is t rue? 
You have to s tudy the underlying algebraic structure,  but  

often the theorems are  not  conducive to efficient computa-  
tion, and new unde r s t and ing - -and  new results---are needed. 
In this article I p resen t  some theorems that  resul ted from 
the effort to find fast methods  for algebraic simplification. 

It should be no surprise  that, in a computa t ional  area, 
conjecture  and examples  go hand- in-hand- -but  only after 

the fact did I realize how closely. Long after I had experi- 
mented,  conjectured,  again experimented,  and then proved 
did I discover that a s imple exanlple--*~/2 + ~ / 3 - - s h e d s  
much  light on four seemingly unrelated results. In several  
cases, the theoret ical  ideas  leap from the simple radical.  And 
that  caused me to think more  about  the role of  example.  

It is a fact little r emarked  upon that  Euler  computed  his 
way  to the law of quadrat ic  reciprocity.  Gauss 's  calculat ions 

led him to the prime number  theorem. Similarly, Dedekind 

and Froben ius  computed  their  way to conjecture and prove 
a number  of  results  concerning group representat ions.  

Despi te  these  demons t ra t ions  of  the  p o w e r  of  compu-  
tation, such  calculat ing fell out  favor  in the  early par t  of  
this century. By introducing abs t rac t  methods  to algebra, 
Hilbert p roved  the basis  theorem, the syzygy theorem, and 
the Nullstellensatz. Not long afterward,  Noether  employed 

similar abs t rac t  methods  in her  work  on ascending chain 
conditions.  Computat ion went  out  of  vogue, eschewed in fa- 
vor of  abstract ion.  It was not  unusual  to see group theory 
taught wi thout  reference to a single concre te  group, to find 
the fundamental  theorem of Galois theory  proved without  

the calculat ion of a single example.  There are good reasons 
to rely on the abst ract  approach: it is powerful,  and for many  
areas  of  mathematics ,  even small  examples  can be remark- 

ably difficult to compute  (commutat ive a lgebra  is one such). 
Yet, examples  have much to t each  us. Examples  can 

point  to a f law in reasoning, and examples  can give stu- 

dents  someth ing  to hold onto as  they  a t tempt  to grasp elu- 
sive theory.  Examples  can demons t r a t e  pa t te rns  and lead  

to conjectures .  But to those  who were  mathemat ica l ly  
ra ised in the  abs t rac t  school,  it  may  be surpris ing to dis- 
cover  how much  examples  can guide research.  

In this  article,  I p resen t  four  resul ts  about  computa t iona l  
a lgebra  seen  f rom the perspec t ive  of  ~/2 + X/-3. My main  
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purpose is illustrating four results in computat ional  alge- 
bra, but along the way I hope to demonstrate  the power  of 
computation. 

Factoring Polynomials 
How does one factor  a polynomial over the rationals? One 
might wonder  if the problem is decidable; an algorithm 
from an as t ronomer  in 1793 shows it is. 

Let f (x)  be a polynomial  of  degree n over  77. Compute 
the values f(0), f ( 1 ) , . . . ,  f (n) ,  and then fac tor  each of  the 
f ( i ) .  Choose a set  of  factors  d(0), d(1) . . . .  , d(n),  and in- 
terpolate to find a potential  factor  d(x)  of f (x ) .  Integer 
factorization is decidable, and because  there are only fi- 
nitely many sets of  the d(i),  factoring is decidable. 
However,  I caut ion the reader  not to implement  this al- 
gorithm, as it takes  exponential  time even in the best  case, 
namely when all the f ( i )  are prime. (Computer  scientists 
define the size of  a problem to be the number  of  bits used 
to represent  the problem. Thus, the input size of  "factor 
the integer n" is log n, as log n bits are needed to repre- 
sent n. The s tandard  viewpoint  is asymptot ic  behavior, so 
I ignore constants,  and, in particular, the base for the log 
function.) 

Since the 1970s, the standard method for factoring has 
been the Berlekamp-Hensel  algorithm (see [1, 11]). This 
works by factoring the polynomial mod  p for some suit- 
able choice of  a prime p, and then "lifting" the factoriza- 
tion to one rood p2, then to mod p4, and so on until the co- 
efficients are sufficiently large that one has a factorization 
that "resembles" the factorization over the integers. For ex- 
ample, the polynomial 

factors into 

and into 

xa - 8x3 + ar - 2 4 x -  6 

(x e + 2x + 3)(x 2 + 3) 

( x  2 - S x  - 2 ) ( x  2 + 3)  

(mod 5) 

(mod 25) 

and, finally, into 

(x 2 - 8x - 2)(x 2 + 3) 

over the integers. 
That's not  so bad. The real issue is, does this algorithm 

always work? One can always factor  mod p, but  will the 
lifting always be efficient? Are there polyomials for which 
the factoring blows up? Unfortunately, the answer is yes. 
Swinnerton-Dyer discovered certain irreducible polynomi- 
als that  factor  into linear or  quadratic factors mod m for 
every integer m. Consider the polynomial 

x 8 - 40x 6 + 352x 4 - 960x 2 + 576. 

Over Q, this is irreducible. But it factors into 

(x 2 + 6x + 6)(x 2 + 6x + 3)(x 2 + x + 6)(x 2 + x + 3) 

(rood 7), 

and into four quadratic factors mod 49, and into four qua- 
dratic factors mod 343, and so on. Indeed, this polynomial 

will factor  into linear or quadratic polynomials (mod m) 
for every integer m. 

A polynomial of lower degree with the same proper ty  is 
x 4 - 10x ~ + 1. Its zero ~/2 § V ~  makes it one of  a special 
class of  polynomials discovered by Swinnerton-Dyer. 
These polynomials have zeros of  the form 

for a set of distinct primes P l , . . . ,  Pn. Galois theory ex- 
plains why they split into so many pieces mod p. 

Take an irreducible Swinnerton-Dyer polynomial, sayf(x)  
of  degree 2 n. Over Q, it has Galois group (Z/277) n. When p 
does not  divide the discriminant off(x), the Galois group of  
f (x)  over ~/pE is a subgroup of  the Galois group off(x)  over 
Q (ifp divides the discriminant, the Galois group off(x)  over 
Z/p~ is a homomorphic image of  a subgroup of  the Galois 
group o f f (x )  over Q). Finite extensions of  finite fields are 
always normal (when one root  is adjoined, all the roots  are), 
and the Galois group is cyclic. Thus, the Galois group over 
Z/p~Y must  be Z/277 or ~/~. The polynomial f(x) must  give 
rise to an extension of degree at most  2 over E/p7/. Thus, 
f (x)  splits into linear or quadratic factors mod p for every p. 

Suppose now one takes two Swinnerton-Dyer polyno- 
mials, say f l (x)  with zeros ~/2 + ~f5 + ... + ~ and 
f2(x) with zero V 3  + ~ + ... + pV~2n2n. Then, f l (x ) f2 (x )  
is of  degree 2n over Q but  factors  into 2 2n-2, 22n-1 or 2 2n 
irreducibles (mod p). (One must  be careful to stay away 
from primes that divide the discrkminant of the polynomial, 
as factoring over such primes introduces repeated factors.) 
Recombining factors to find the factorization offl(x)f2(x ) 
over ~ involves at least 2 ~'' combinations. 

When Does a Polynomial Have Solvable Zeros? 
Given an irreducible polynomial over the rationals, how can 
we tell if its zeros are expressible in terms of radicals? Galois 
theory gives a technique to discover the answer. That is, in 
principle. In practice, if f(x)  is a polynomial of  degree n, 
Galois's algorithm takes time greater than 2 n! steps to deter- 
mine solvability--even with today's computers, the technique 
is simply not viable for polynomials of degree higher than 5. 

There is another well-known method to solve this prob- 
lem: fac to r f (x )  over Q[x]/f(x), adjoin a zero of  one of  the 
remaining nonlinear irreducible factors, factorf(x)  over the 
new field, adjoin another zero, and stop only when the poly- 
nomial splits completely. This is a faster technique than 
Galois's original method. Ignoring the size of  the coeffi- 
cients off(x),  bootstrapping, as this method is called, takes 
2 n steps to find generators for the splitting field of f (x)  over 
Q. Unfortunately, this is exponential  in n. 

There is, however, a polynomial-time algorithm for the 
problem. The idea is quite simple: divide the the solvabil- 
ity question up into lots o f  smaller solvability problems. 

Let a be a zero of the polynomialf(x) .  Suppose there is 
a field Q(fl) between Q and Q(a) ,  Q C ~(/3) C Q(~). Then, 
a is expressible in radicals over Q if and only if a is ex- 
pressible in radicals over (~(fl) and fl is expressible in terms 
of  radicals over Q. There's no reason why one should stop 
with one intermediate field. 

56  THE MATHEMATICAL INTELLIGENCER 



Suppose  I could find a maximal  chain of  f ields Q = 

Q(fl0) C ~ (~1)  C "" C Q(fin)  C ~(ot)  = Q(~n+l ) ,  where  

Q(fli)  C F C Q(fl.i+l) impl ies  F = ~(fli) or  F = Q(fl i+l) .  
Then, a is express ib le  in radicals  over  ~ if and  only if a is 

express ib le  in radicals  over  Q(/~n) and fin is express ib le  in 
radicals  over  Q(fln-1) a n d . . ,  and 81 is express ib le  in rad- 

icals  over  Q(fl0) = Q. 
In terms of  group theory,  I am looking at subgroups  of 

G~, the  subgroup of the Galois group that fixes a. Let G act 

on a set  ~ = {al, �9 �9 �9 an}. A C ~ is a block o f impr imi t i v -  
i ty  if for all (r ~ G, ~(A) n A = ~ or  A. The singleton sets 
and the full set  ~ are a lways blocks; if these are the  only 

b locks  of  imprimitivity, then the group is acting primit ively  
on t2. To say that there  is no field between Q(fli) and Q(fii+ ~) 
is equivalent to saying the Galois group of the split t ing field 

of  Q(f l i+l)  over  Q(fii) acts  primitively on the set  of zeros of 
the minimal  polynomial  of  Q(fi i+l)  over  Q(fi). 

Primit ive solvable  pe rmuta t ion  groups are  small .  In 
1982, P~lfy showed that  a pr imit ive solvable pe rmuta t ion  
group acting on n e lements  has  no more  than n 3-25 e lements  

[8]. So, if one could cons t ruc t  those  in termedia te  fields, the 
Galois  group that  is cons t ruc ted  would  be act ing primi- 
t ively on the roots. If  the  ex tens ions  were  also solvable,  by 

Phlfy's resul t  they would  be  small, and thus could  be  com- 
pu ted  quickly even by  bru te  force. 

Gary Miller and I found a polynomial - t ime a lgor i thm for 
f inding maximal  subf ie lds  be tween  Q and Q ( a )  [6]; i terat-  
ing this gives a method  for  f inding a maximal  chain o f  sub- 
fields. Here, I will p r e sen t  Hendr ik  Lenstra 's  implementa-  

t ion of  the Landau-Mil ler  a lgori thm [7]. Let f ( x )  be the 
i r reducible  polynomial  of  a over  Q. Suppose  f ( x )  fac tors  
into i r reducible  factors  Ilhi(x) in L = Q[x]/f(x) = ~(a) ,  
where  a is a zero o f f (x ) .  Then, for each i r reducible  fac tor  

h(x) o f f ( x )  in L, we define the  field Lh as follows: 
If h(x) = (x - 11) is a l inear  factor  (i.e., if 1, can be writ- 

ten as a polynomial  in a with coefficients in Q), let ~r be  the 
unique automorphism in the Galois group that  takes  a to % 
and let  Lh be the field of  invariants of  ~. Otherwise,  if ~/is 

a zero of  h(x), a nonl inear  factor  o f f (x )  in Q[x]/f(x), then 
L h = (~(a) N ~('y).  All the maximal  subfields of  L occur  
among the Lh; they are those  subfields of  highest degree over  
Q ([7], p. 224). This follows from the simple observat ion that  
if G is a finite group with H C J C G subgroups with H r J, 

and no subgroup I of  G such that  H C I C J with H r I r J, 
then there exists  ~ ~ G - H such that  

< H , o - > = J  i fo-H~ ~=H,  
< H,o'H(r -~ > =  J if o-Ho --~ r H. 

One can repea t  this p rocedu re  [substituting Q(fli)  for  Q(a) ]  
to de te rmine  a maximal  chain  of  subfields be tween  Q and 
Q(a) .  Not only have we de te rmined  solvability, but  we  have 

also given a technique for  de termining  all subf ie lds  of  a 
given field. 

Let us take  a s imple Galois  ex tens ion  but  one with  some  
subf ie ld  structure.  An obvious  example  to choose  is 
Q(X/2,~/3) = ~ ( ~ / 2  + ~/3) --~ @[x 4 - 10x 2 + 1]/x; as  we 

know, the p o l y n o m i a l x  4 - 10x 2 + 1 has  zeros _+N/-2 _+ V3.  

Factor ing tha t  polynomial  over  the field Q(~ /2  + ~/3), the  

polynomial  spl i ts  completely:  

x 4 - 10x 2 + 1 

= (x - 10(~/~ + x/5) + (~/~ + ,JS)3)(x + 10(x/~ + ~/5) 
- ( ~ / ~  + *dS)3)(x + ~/~ + x/5)(x - (~/~ + x/-5)) 

= ( x  + ~ / ~  - ~ / 5 ) ( x  - ~ / ~  + ~ / 5 ) ( x  - ~ / ~  - ~ / 5 ) .  

(x + x/~ + ~/5) 

There are  th ree  2-element b lock  decomposi t ions .  
The b lock  decompos i t ion  {(%/2+ N/-3, ~ v / 2 - ~ - 3 ) ,  

( - ~ f 2  + ~/3, - ~ / 2  - ~f13)} gives r ise  to  the polynomials  
x 2 - 2X/2x - 1 and x 2 + 2~,/--2x - 1 and cor responds  to the  

field Q(~/-2). The b lock  decompos i t ion  {(N/-2 + ~ / 3 , -  ~/2 + 
~/3), ( N / 2 -  ~/3, - ~ / 2 -  ~/3)} co r r e sponds  to polynomial  
factors  x 2 - 2~/3x  + 1 and x 2 + 2~/3x  + 1 and the field 

~(~f3) .  And the b lock  decompos i t ion  {(~J2 + ~ f 3 , -  

- ~/-3), ( - ~ / 2  + ~/3, ~ - ~/3)} co r re sponds  to poly- 
nomial  fac tors  x 2 - 5 - 2~/6 and x 2 - 5 + 2~/-6 and the in- 

te rmedia te  f ield @(N/6). 

If one wan t s  a s imple example  of  Galois  theory,  the field 
Q(~v/2 + ~/3)  over  Q is a nice one; it has  a slightly com- 
plex subfield structure,  with three  nontr ivial  subfields. And 

the b lock  decompos i t ion  of  the  four  zeros -+V~ _+ 
gives a s imple  but  effective demons t ra t ion  of  some ele- 

menta ry  resul ts  in primit ive pe rmuta t ion  groups.  Another  
aspec t  of  ~ /2  + ~/3 has  surfaced.  

Polynomial Decomposition 
Multipl icat ion is a fundamenta l  mathemat ica l  operation;  

factoring, i ts reverse.  But po lynomia ls  are  funct ions and 
have ano the r  opera t ion  akin to mult ipl icat ion,  namely  com- 

posit ion,  f ( x ) = g ( x ) o h ( x )  or, equivalently, g(h(x)). 
Composi t ion  is interest ing for a number  of reasons,  in- 

cluding the fact  that  in composi t ion,  unl ike polynomial  
mult ipl icat ion,  the  degrees  multiply. That  complexi ty  made 
polynomial  compos i t ion  a potent ia l  candida te  for an RSA- 
type cryptosys tem.  (RSA is a "public key" c ryp tosys tem in 
which "easy" par t s  of  the computa t ion  are  public, and dif- 

f icul t - to-compute por t ions  are private,  thus  providing se- 
curity. See [9].) The p rob lem is also made  more  interest-  
ing by  Ltiroth 's  t heorem [10], which  tel ls  us that  if k is an 
arbi t rary  field, the  fields be tween  k( f (x ) )  and k(x) are in 
one-to-one co r re spondence  with the  decompos i t ions  of  

f (x) ;  each  field be tween  k( f (x))  and k(x) can be wri t ten as  
k(h(x)) for some  (right) compos i t ion  fac tor  o f f (x ) .  

These were  among the mot ivat ions  that  Dexter  Kozen 
and I had  when  we looked  at the issue  of  decomposi t ion.  
Previous a lgor i thms had rel ied on factorization;  a theorem 
of Evyater  and  Scott,  Dorey and Whaples,  and Fr ied  and 

MacRae s h o w e d  that  the univariate  po lynomia l  f ( x )  is de- 
composab le  into g(h(x)) if and only if the  mult ivar ia te  poly- 
nomial  h(y) - h(x) divides f ( y )  - f ( x ) .  Barton and Zippel 
(and independen t ly  Alagar  and Thanh 1) used this to de- 

compose:  fac tor  f ( y )  - f ( x ) ,  compute  potent ia l  decompo-  
sit ion fac tors  f rom divisors of  f ( y ) - f ( x ) .  If f ( y ) - f ( x )  

11 am presenting the Barton and Zippel algorithm. 
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splits into many  factors  of  small  degree, the  a lgor i thm takes  
exponent ia l  t ime to compute  a decomposi t ion .  It is the old 
recombina t ion  of  fac tors  p rob lem again. 

Kozen and I d iscovered a simple way to decompose  poly- 
nomials  f (x)  when  the degree is not divisible by  the char- 
acterist ic of the  field [3]. We also found an elegant  s tructure 

theorem that  gives a method  for decomposi t ion.  The theo- 
rem gives an effective technique for decompos i t ion  over fi- 
nite fields; the theorem also applies in character is t ic  0. 

We began by  general izing the concept  of  po lynomia l  de- 
composi t ion.  Let k be  a field of arbi t rary  charac te r i s t ic  and 

let  f ( x )  ~ k[x] be of  degree  n = rs, not  necessar i ly  irre- 
ducible  or separable .  Let/~ be the spli t t ing field o f f (x )  over  
k, and let  ~ deno te  the  Gaiois group of/~ over  k. 

D e f i n i t i o n  1. A block decomposi t ion  f o r  f is  a mu l t i s e t  A 

o f  mul t i se t s  o f  e lements  o f  k such that, 

�9 f =  [IAa~ I I ~ A ( X  -- a), 
�9 ife~ ~ A ~ A, fi ~ B ~ A, and cr E cb such  that  (~(c~) = ~, 

then 

B = a(A) = {a(y)iT E A}. 

A block decompos i t ion  A is  an  r • s block decompos i t ion  

i f  IAI = r and ~1 = s f o r  all A ~ A. 
This general izat ion of  b lock  decompos i t ion  to mult isets  

is useful  in decomposi t ion ,  where  po lynomia ls  are  not  nec- 
essari ly i r reducible  and may have r epea ted  zeros. 

Let c} n denote  t h e j t h  e lementary  symmet r i c  function on 

m-element  mult isets:  

B I-J rOB 

We let c~ n = 1. 

T h e o r e m  2 (Kozen and Landau [3]) Let  f ( x ) E  k[x] be 
m o n i c  o f  degree n = rs. The fo l lowing  two s ta temen t s  are 
equivalent: 

�9 f = g  o h  f o r  some  g, h ~k[x]  o f  degree r and s, respec- 
tively. 

�9 There ex i s t s  an  r x s block decompos i t ion  A f o r f  such 
that 

c ~ ( A ) = c ~ ( B ) ~ k  f o r a l l A ,  B E A ,  O < - j < - - s -  1. 

In the p roo f  of  Theorem 2, g and h are  expl ici t ly  con- 
s t ruc ted  from A, B, and A by 

8--1 

h = ~ .  ( - 1 )  k c](A)x s- j ,  
j - 0  

with g de te rmined  e i ther  explici t ly f rom 

g(x)  = I I  [x - ( - 1 )  s+1 c~(A)l 
A~Zl 

or by the fact  that  f ( x )  =- g(h(x)) .  

What  is the s implest  po lynomia l  that  we  can use  to il- 

lus t ra te  Theorem 2? Because  degrees  mult iply when  poly- 
nomials  a re  composed,  the  lowest -degree  polynomial  tha t  

has  a nontr ivial  decompos i t ion  would  be one of degree  4. 
The po lynomia l  x 4 - 1 0 x  2 + 1 fits the requi rements  of  

Theorem 2, and indeed, we  get  a b lock  decompos i t ion  

We have 

A =  
c2(A) = 

c21(A) = 

A B 
~/~ + ~/5 ~7~ - "75 
- ~ / ~ -  ~/ -5 -~/-~ + ~7~ 

1 = c2(B), 

~/~ + ~/5 + ( - ~ / ~  - ~/5)  = 0 = - V ~  + V 5  + 
N/2 - ~ = c2(B), 

c.~(A ) = - 5  - 2 V ~ ,  

c~(B) = - 5  + 2N/-g, 
h (x )  = x ~ - Ox = x 2, 

g(x)  = [x - ( - 1 ) 3 ( - 5  - 2~/6)][x - ( - 1 ) 3 ( - 5  + 2~/6)] 

= x  2 - 1 0 x +  1. 

Thus, we have a decompos i t ion  of  x 4 - 10x 2 + 1 - - a  de- 
compos i t ion  that  the observan t  r eader  may  have a l ready  
not iced.  2 

At this  point, I might have real ized that  I should  inves- 
tigate N/2 + ~ for any algebraic investigation I might t r y - -  

but  I d id  not. Instead, I f irst  exp lo red  a number  of  radical  
express ions ,  and only then  real ized that  my famil iar  ex- 
ample  was  a par t icular ly  easy  one with which to i l lust ra te  
the  theorem.  

Denesting Radicals 
Ramanujan  d iscovered that  

~ / ~  - 1 = ~ i 7 9  - ~2-79 + ~ - 9 ,  

N / ~  - ~ = 1/3C~/-2 + ~ - ~ ) ,  

~ / 7 ~ / ~  - 1 9  = ~ - ~ / - 3 .  

How can we simplify nes ted  radicals ,  going from complex  
equat ions  as displayed on the lef t-hand side to the  s impler ,  
denested vers ion on the r ight-hand side? 

Fol lowing [2], a f o r m u l a  over  a field k and its depth o f  
nes t i ng  are defined as follows: 

�9 An e lement  of  k is a fo rmula  of  depth  0 over  k. 
�9 An ar i thmet ic  combina t ion  (A + B, A x B, A/B) of  for- 

mulas  A and B is a fo rmula  whose  depth  over  k is 
max(depth(A) ,  depth(B)).  

�9 A roo t  ~ of  a formula  A is a formula  whose  dep th  over  
k is 1 § depth(A).  

Such a formula  is a nes ted  radical .  A nest ing of  a means  
any formula  A that  can take  a as a value. Note that  n th  

roo ts  are  multivalued, so ambigui ty  is an issue. See [5] or  
[4] for  fur ther  details. 

2Although in the previous section we had three different block decompositions [corresponding to the fields Q(x~2), Q(~/3) and Q(~f6)], under the more restrictive re 
quirements of Theorem 2 that c~(A) E k, we have only one block decomposition, corresponding to the single polynomial decomposition. 
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The formula  A can be denes ted  over the f i e ld  k if there  
is a formula  B of lower  nest ing depth than A such that  
A = B. Formula  A can be denes ted  i n  the f i e ld  L if there  
is a formula  B = A of  lower  nest ing depth than A with all 
of  the terms (subexpress ions)  of  B lying in L. Define the 
depth of  a over  k to be the depth of  the minimum depth  
express ion  for  ~. When given a formula  A for a such that  
A can be denested,  I will somet imes  say that  a can  be 
denested.  And I will cheat  a little by writing a primitive 
n th  roo t  of  unity as a special  symbol  ~n ra ther  than as 
a nes ted  radical; this defines the depth of  nesting to be 
1 for a primitive root  of  uni ty  that  is not  a lready in the 
field. 

Under what  circumstances can a radical be expressed 
in terms of radicals with a lower  depth of nesting? I dis- 
covered that each time I computed  subfields of  Q(a) ,  
where a was a nested radical, the subfields cor responded 
to a denesting. 

T h e o r e m  3. Suppose ct is a nested radical over k, where  
k is a f ie ld  o f  characteristic 0 containing all roots o f  
uni ty .  Then, there is a m i n i m a l  depth nest ing o f  c~ w i t h  
each o f  its terms lying in  the spli t t ing f ie ld  o f  the m i n i -  
mal  po lynomia l  o f  c~ over k. 

All roots of  unity is a rather  large extension over Q; in 
particular, it is an infinite extension. From a computat ional  
standpoint,  such an extension is not  viable. Roots of  unity 
are needed to make the field extensions between k and L 
Galois. However, we can limit ourselves to adding only 
those roots  of  unity that are necessary, thus trading opti- 
mality of  denesting for finiteness of  the extension over Q. 
Let ~t denote the lth root  of  unity. 

T h e o r e m  4. Suppose c~ is a nested radical over k, where  
k is a f i e l d  o f  characteristic O. Let  L be the spli t t ing f i e ld  
o f  k(cO over k, wi th  Galois group G. Let I be the least com- 
m o n  mul t iple  o f  the exponents  o f  the derived series o f  G. 
I f  there is a denest ing o f  c~ such that each o f  the terms 
has depth no more than t, then there is a denest ing o f  a 
over k(~t) w i th  each o f  the terms having depth no more  
than t + 1 and lying in  L(~t). 

We can restore optimality by allowing some additional 
roots  of  unity, those that arise f rom the original expression 
for or: 

C o r o l l a r y  5. Let k, ~, L, G, l, and t be as in  Theorem 4. 
Let  m be the least common  mul t ip le  o f  the (mij), where  
the mij  are the indices o f  the roots in  the given nested ex- 
press ion  f o r  o~. Let  r be the least common  mult iple  o f  (m, 
l). Then, there is a m i n i m a l  depth nest ing of  ~ over k(~r) 
w i th  each of  its terms ly ing in  L(~r). 

One of  the simplest nested radicals is h / 5  + 2X/6; con- 
sider the field extension Q(V/-5 - + 2~fl6) over Q. As we al- 
ready know, the algebraic number  %/5 + 2X/6 satisfies the 
irreducible polynomial x 4 - 10x a + 1 over (~. The field 

Q(~v/5 + 2~/-6) is of  degree 4 over Q, and it has 
{1, ~v/5 + 2V~, 5 + 2X/-6, (%/5 + 2V~)  3} as a basis over Q. 
This basis is of  a nice mathematical form: {1,o~,o~2,cr3}. But 
because 

and 1, ~/2, h/3, and ~/6 are linearly indep_e_ndent over Q, 
{1, ~/2, ~r ~/6} is also a basis for Q(~v/5 + 2 - ~ )  over Q. 
Many people prefer  the second basis; it seems more nat- 
ural to them. 

Thus, ~ + h/3  provides a practical reason for investi- 
gating denesting, namely designating procedures  for a sym- 
bolic computa t ion system like Maple to simplify nested rad- 
icals, and _thus, for example, to t ransform the basis {1, 
Xfl5~+ 2X/-6, 5 + 2%/-6, (~ /5  + 2N/6) 3} into {1, ~/2, V~, 

~/6}. In computat ional  algebra, the practical and the theo- 
retical often go very much hand in hand. 

What Is the  S igni f icance  of All This? 
~/2 + ~/3 is one  of  the simplest combined  radicals that 
exists, yet  it provides  a wealth of  information about  al- 
gebraic structure.  For  example, s tudying it demonstrates  
the relationship between intermediate subfields and de- 
compos i t i on - - a  relationship that  led to the discovery of  
Theorem 2. 

In one sense, I have presented a curiosity: one simple 
equation that illustrates results about  factoring polynomi- 
als over Q, finding subfields using minimal blocks of  im- 
primitivity, determining decomposit ions of  polynomials, 
and denesting. But I think there is a deeper  issue here. 

For many of  us, computat ion has gone the way of  the 
slide rule. We use it occasionally to illustrate a theorem. 
Yet the tools of  such symbolic computat ion packages as 
Maple, MacCauley, Grobner, and AXIOM make such alge- 
braic computat ions  far easier to perform than they have 
ever been. When, in the 1920s, the Hilbert and Noether 
school made the transition to abstract  methods, it was 
greatly beneficial to mathematics. The multivariate com- 
putations in commutat ive algebra were too large to be done 
by hand, and the abstract  methods achieved what compu- 
tation could not. Unfortunately, the transition went much 
farther. Algebraists and mathematicians of  many flavors 
pursued abstraction, and concrete examples rarely ap- 
peared. The result was a ga in- -and  a loss. We have a 
chance to recoup that now. The computat ional  tools re- 
cently introduced by computer  scientists and mathemati- 
cians enable us to solve much harder problems, in exten- 
sions of  higher degree, with many variables. 

I am convinced that had I fully examined ~ + X/3, re- 
sults in decomposi t ion and denesting would have jumped 
out at m e - - o r  o thers - -years  earlier. Proof  is the backbone 
of mathematics.  Examples can light the way. We should 
use them for teaching, exploring, and research. 
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