
Timesharing Dexter

Susan Landau⋆

My husband Neil Immerman returned from the 1986 STOC meeting with an
interesting proposition. Juris Hartmanis and Dexter Kozen had a small pocket
of funds, and they proposed that the two of us visit the Cornell Computer Science
Department for a week.

It sounded delightful but we had a complication: our new son, who was all of
four months old. We decided to time-share Dexter and split child care (using the
rule that during the day, he who was not with the baby would be with Dexter).
The Kozens improved upon this, offering that we could stay at their house. So
while one of us would be talking research with Dexter in his office, the other
would be taking care of the baby while visiting Fran at home.

Thus began Dexter’s and my adventure into polynomial decomposition. The
week before I arrived at Cornell, I had been thinking about polynomial de-
composition, that is, the issue of finding a non-trivial solution to the problem
f(x) = g(h(x)) (non-trivial means that both g(x) and h(x) are of degree greater
than 1). Barton and Zippel had a solution for fields of characteristic 0, noting
that if f(x) = g(h(x)), then h(x) − h(y) divides f(x) − f(y). They used this
— and a refinement, under the assumption that h(0) = 0, h(x)|(f(x) − f(0))
(without loss of generality, one can assume that h(0) = 0) — to find potential
h(x) [2]. Their algorithm was exponential in n, the degree of f(x).

Even with the lack of sleep that accompanies having a baby, I thought I
could do better. Lüroth’s theorem states that if k is an arbitrary field, the fields
between k(f(x)) and k(x) are in one-to-one correspondence with the decompo-
sitions of f(x). Each field between k(f(x)) and k(x) can be expressed as k(h(x))
for some composition factor of f(x) [7].

I knew how to find certain subfields of a field rather quickly [6] and I thought
I could apply that technique. But my potential solution ran into a difficulty.
Instead of being kept awake by our son, I spent my first night in Ithaca awake
puzzling over polynomial decomposition and blocks of roots of polynomials. That
Monday afternoon I talked with Dexter about the problem, my approach, and
the difficulty with it. Dexter hadn’t been thinking about polynomials, decompo-
sition, or subfields, but in his inimitable fashion, Dexter immediately got very
excited. We got to work.

Let me provide some notation and background. Let k be a field of arbitrary
characteristic and let f(x) be a monic separable polynomial (no repeated roots)
of degree n with coefficients in k. Let K be the splitting field of f(x) over k,
the smallest field containing all the roots of f(x) over k. Futhermore let G be
the Galois group of f(x) over k, the set of permutations of the roots that hold
the base field k fixed.
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Evariste Galois showed that there is a one-to-one correspondence between
the subgroups of G and the subfields between K and k. (He used this to show
that roots of arbitrary polynomials of degree five or greater are not necessarily
expressible in radicals.) From previous work [6], as long as f(x) was irreducible
over a field of characteristic 0 (and k[x] had a factoring algorithm), I had an
efficient method for for computing the fields that lay between k and k[x]/f(x).

My work relied on block decomposition. If G is a permutation group on Ω =
{α1,α2, . . . ,αn}, the roots of f(x) over k, we let Gα be the subgroup of G that
fixes α. The fields between k and k[x]/f(x) — one of which was k[x]/h(x) —
correspond to subgroups of Gα. Finding intermediate fields could give a decom-
position. But decomposable polynomials may have repeated roots, and Galois
fields don’t capture this situation.

I thought our week in Ithaca would involve Neil in Dexter’s office in the morn-
ings, me there in the afternoons, while the evenings would have Fran, Dexter,
Neil and me at home, visiting. I had that partially right. Fran, Dexter, Neil and
I were at home in the evenings, and sometimes we all got to visit (mostly over
dinner). But on decomposition Dexter was like a dog with a bone: toss the re-
peated roots problem in the air, let it land, grab it, worry it some more, toss it
again, and keep it going. He and I spent the evenings puzzling over, pulling at,
pressing on decomposition.

If the approach of Galois fields wouldn’t allow repeated roots, generalizing
the notion of blocks would.

Let k be a field of arbitrary characteristic and let f(x) be a monic polynomial
in k[x] of degree n = rs, with f(x) not necessarily irreducible or separable. Let
K be the splitting field of f(x) over k, and let G denote the Gaiois group of
f(x) over k. Dexter and I defined a block decomposition for f(x) a multiset A of
multisets of elements of k such that,

– f(x) = ΠA∈∆Πα∈A(x− α);
– if α ∈ A ∈ ∆ and β ∈ B ∈ ∆, and σ ∈ G is such that B = σ(A) = {σ(ρ)|ρ ∈

A}.

A block decomposition ∆ is an r× s block decomposition if |∆| = r and |A| = s
for all A ∈ ∆. This generalization of block decomposition to multisets meant
that f(x) could have repeated roots. Dexter was very happy (the bone stopped
being tossed in the air quite so often). This definition enabled Dexter and me
to generalize the subfield issue to handle reducible polynomials and polynomials
with repeated zeros. Before I present our structure theorem, I need to provide
some additional notation for you to gnaw on:

Let:

f(x) = xn + ars−1xrs−1 + . . .+ a0, with ai, 0 ≤ i ≤ rs − 1;
g(x) = xr + br−1xr−1 + . . .+ b0, with bj , 0 ≤ j ≤ r − 1; and
h(x) = xs + xs−1xs−1 + . . .+ c0, and with ck, 0 ≤ k ≤ s,∈ k.

Furthermore let cmj denote the jth elementary symmetric function on m-element
multisets:
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– cmj = ΣB⊆A,|B|=jΠB, and
– cm = 1.

Dexter and I showed:

Theorem: Let f(x) ∈ k[x] be monic of degree n = rs. The following two
statements are equivalent:

– f(x) = g(h(x)) for some g(x) and h(x) in k[x] of degree r and s respectively.
– There is an r × s block decomposition ∆ for f(x) such

that cjs(A) = cjs(B) ∈ k for all A,B ∈ ∆, O ≤ j <≤ s− 1 [5].
Without loss of generality we can assume that c0 = 0. With that assumption,

we get that if f(x) = g(h(x)), then f(x) and h(x) agree on their first r coef-
ficients. The calculation of the remaining coeffcients of h(x) falls out from the
simple recurrence equation for the ci. From h(x) we can determine g(x). (Be-
cause the system is overdetermined, we have to check that candidate g(x) and
h(x) actually lead to a decomposition.) Our algorithm decomposes f(x) in O(n3)
in general — a rather impressive improvement from the earlier exponential-time
algorithms. The algorithm works even faster if the underlying field supports Fast
Fourier Transform (O(n2 logn) steps) [5].

The bone had been fully gnawed upon. Dexter was delighted (as was I). There
was more to come.

My motivation in considering decomposition was because of its fundamental
role in computer algebra. But Dexter’s and my result turned out to have other
applications as well. In 1985 a cryptosystem was proposed based on polynomials
[3]. Because in composition polynomial degrees multiply (rather than add, as is
the case for polynomial multiplication), the thought was that perhaps composi-
tion could be an RSA-type cryptosystem based on polynomials.

The Kozen-Landau theorem shows that polynomial composition is not a good
candidate for such public-key systems. Recently I was told that in the main
Maple command “solve” for solving polynomial systems (and pretty much every-
thing else), the algorithm begins by attempting to decompose any polynomials
passed as input. This is because even while few polynomials are decomposable,
the decomposition method is sufficiently fast that it provides a big win when it
succeeds. The implementation is the Kozen-Landau technique [4].

There was yet another consequence of Kozen-Landau. The polynomial x4 +
x+1 is the smallest polynomial overGF (2) that has a non-trivial decomposition:
x4 + x + 1 = g(h(x)), with g(x) = x2 + x + 1 and h(x) = x2 + x. Sometime
after Neil and I left Ithaca and the Kozen domicile, Fran and Dexter retiled
their bathroom shower. They included a strip of 4 × 4 small green and white
tiles running along the wall; it is the cyclic multiplicative group of GF (16) as
represented by polynomials mod(x4 + x+ 1) generated by x:



332 S. Landau

Even when he showers, Dexter can’t get away from decomposing polynomials!
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